

23 December 2021

Disclaimer

This presentation has been prepared by FTI Consulting LLP ("FTI") for the purpose of quantify the net welfare benefits in Greece of building the South Kavala storage based on a simulation of future gas and power markets to 2050. This presentation is provided for initial, informational purposes only and should not be relied on in any way.

This presentation was prepared based on specific instructions and does not necessarily reflect the views or opinions of FTI or the author of the presentation. Accordingly, this presentation may not be used to discredit the opinion or testimony, or diminish the credibility, of FTI or the author of this presentation, in any court of law, arbitration or other legal proceedings or otherwise.

This presentation and its contents are confidential and may not be copied, reproduced or provided to third parties without the prior written consent of FTI. FTI accepts no liability or duty of care to any person for the content of this presentation. Accordingly, FTI disclaims all responsibility for the consequences of any person acting or refraining to act in reliance on the presentation or for any decisions made or not made which are based upon the presentation and/or its content.

The presentation contains information obtained or derived from a variety of sources. FTI does not accept any responsibility for verifying or establishing the reliability of those sources or verifying the information so provided.

Nothing in this material constitutes investment, legal, accounting, tax or other form of advice, or a representation that any investment or strategy is suitable or appropriate to the recipient's individual circumstances, or otherwise constitutes a personal recommendation.

No representation or warranty of any kind (whether express or implied) is given by FTI to any person as to the accuracy or completeness of the content of this presentation.

All copyright and other proprietary rights in the presentation remain the property of FTI and all rights are reserved.

UK Copyright Notice

© 2021 FTI Consulting LLP. All rights reserved.

Table of Contents

0. Executive summary	4
1. Context	24
2. Simulation tool	35
3. Methodology for welfare quantification	48
4. 750 €m investment scenario results	60
5. 422 €m investment scenario results	67

0. Executive summary

FTI Consulting modelled the benefits (incl. security of supply value) and costs of creating a storage at South Kavala, under two network upgrade scenarios

Section summary

Context

DESFA asked FTI Consulting to **quantify the welfare benefits** in Greece of building an Underground Gas Storage (UGS) facility at **South Kavala and related network upgrades, under two network upgrade scenarios** – a Full Investment scenario at EUR 750m CAPEX, and a Partial Investment at EUR 422m CAPEX.

We simulated the gas and power markets from commissioning date (2027) to 2050 with and without the Investment to quantify the Investment's welfare creation. On top of the normal, most likely conditions, and in line with regulatory approaches, we also quantified the security of supply value brought by the Investment using extreme events scenarios.

2 Simulation tool

5

To model the European gas and power market to 2050, we relied on a Plexos platform as used by ENTSOG and ENTSOE for their TYNDP.

The model accounts for all gas & power infrastructure, supply and demand across Europe, with additional granularity for the Greek gas system. Model inputs stem primarily on ENTSOG & ENTSOE data, with specific complements from DESFA for Greece.

3 Methodology for welfare quantification

To quantify the increase in Greek welfare as a result of the Investment, we **followed ENTSOG's CBA methodological guidelines**, and computed 4 metrics **measuring wholesale price reduction (externalities) and private trading benefits** created by the Investment.

The metrics are modelled in normal conditions from 2027 to 2050, but are also modelled under **six stress scenarios to measure the security of supply value** under a range of circumstances, with four stress scenarios constructed based on historical precedents, on two based on RAE's 2020 National Risk Assessment Study

4 750 €m investment scenario results

In the Full Investment, total welfare benefit is EUR₂₀₂₁ 481m over 2027-2050 under normal conditions, with stress cases bringing additionally EUR₂₀₂₁ 293m of benefits, **below the sum of costs at EUR₂₀₂₁ 913m**.

422 €m investment scenario results

In the Partial Investment, total welfare benefit is EUR₂₀₂₁ 446m over 2027-2050 under normal conditions, with stress cases bringing additionally EUR₂₀₂₁ 274m of benefits, **above the sum of costs at EUR₂₀₂₁ 632m**.

6

DESFA asked FTI Consulting to quantify the welfare benefits of building South Kavala UGS and related network upgrades, under two Investment scenarios

Overview of Investment scenarios

Partial Investment scenario, with 422 M€ network upgrade

Investment scenarios

Source: ENTSOG and DESFA

Note: A network upgrade more limited than the Partial Investment scenario was also envisaged by DESFA, but such limited upgrade would have required to significantly constrain the storage use, and therefore was not retained as appropriate by DESFA.

We simulated the gas and power markets from commissioning date to 2050 with and without the Investment to quantify the Investment's welfare creation

Illustration of quantification of welfare benefits: wholesale market externalities

Commissioning date

7

In line with regulatory approaches, we also quantified the security of supply value brought by the Investment through the modelling of extreme events

Approach to capture value put on security of supply

Illustration of stress system conditions

To model the European gas and power market to 2050, we relied on a Plexos platform as used by ENTSOG and ENTSOE for their TYNDP

Main features of the gas & power integrated model built for DESFA's CBA

Plexos model

- Mixed Integer Linear Programming model.
- Platform used by ENTSOG & ENTSOE for TYNDP.
- Modelling from 2027 to 2050.
- Regular backcast of the power leg of the model., which has been used in major energy projects in Europe by FTI-CL energy.

Hourly modelling run

- Yearly independent modelling runs from 2027 to 2050.
- 8760 hours * 24 years = 210,240 optimisations, run together on a weekly basis.

ENTSOG chooses PLEXOS to model the European gas system

Note:

When we model energy markets on Plexos, we face a trade off between accuracy of results and modelling running time, which led us to select a weekly grouping of hourly optimisations. TYNDP always refers to Ten-Year Network Development Plan 2020 (latest available) published by ENTSOE and ENTSOG. Next TYNDP expected in 2022.

FTI-CL Energy = Energy team of FTI Consulting and its wholly owned subsidiary Compass Lexecon

Simulation tool

The model accounts for all gas infrastructure, supply and demand across Europe, with additional granularity for the Greek gas system

Focus on gas

Overview

- FTI-CL Energy's gas market model covers the EU-27 countries as well as the UK, Switzerland, Norway and the Balkans.
- The model considers supply stacks of European indigenous gas fields, as well as stacks of Russia, Azerbaijan and Algeria's gas fields.
- The model determines endogenously:
 - The hourly marginal price ensuring demand is served by supply
 - Hourly flows at every gas node across Europe
 - Gas demand for power generation as a result of the gas and power optimisation process
- The model considers cross-border transport constraints across Europe.
- The model also considers Power2Gas and battery capacities as required for power security of supply.

Source: FTI-CL Energy

The model accounts for all power infrastructure, supply and demand across Europe, including major sub-country price zones

Focus on power

Overview

- FTI-CL Energy's power market model covers the EU-27 countries as well as the UK, Switzerland, Norway and the Balkans.
- FTI-CL Energy's power market model constructs supply in each price zone based on aggregated power plants:
 - Zonal prices are determined as the marginal value of energy accounting for generators' bidding strategies.
 - The model takes into account crossborder transmission and interconnectors, and unit-commitment plant constraints across Europe.
 - The model also provides hourly prices and flows at every power node across Europe.
- FTI-CL Energy's power market model uses ENTSOE Pan-European Climate Database for hourly time series for wind and solar production, hydro inflows and demand pattern.

Geographic scope

2

Our integrated gas & power model considers a granular mapping of Greece

Map of Greece and neighbouring countries gas and power main infrastructures – From Plexos model

Source: Plexos and FTI-CL

Our model relies primarily on ENTSOG & ENTSOE data, with specific complements from DESFA for Greece

Main sources used

Gas

Demand

- Annual demand DESFA's Development Study and ENTSOG's TYNDP.
- Daily demand profile
 University College Cork
 Plexos' gas model
 ("UCC").

Supply

Volume and prices

- Volume and cost of indigenous gas supply in Europe by Rystad.
- Russian export prices based on expected strategy to be competitive in major
 European markets vs. LNG.
- LNG price based on IEA and ICIS data.

Infrastructure

Pipelines' capacity

- DESFA's Development Study 2021-2030; and
- ENTSOG TYNDP 2020 Low Scenario (includes existing infrastructure and post-FID infrastructure).

Power

- Annual demand
- National Energy and Climate Plan (NECP) demand scenarios.
- EU Commission Energy Roadmap 2050.
- Daily demand profile
 - ENTSOE'S TYNDP data.

Long term capacity scenarios 5 derived from:

- Dynamic long-term optimization; combined with
- Long term capacity scenarios based on energy policies and regulation.

Short term capacity scenarios derived from:

 Hourly supply in each price zone based on aggregated plants constraints.

Transmission' lines capacity 6

 Based on the ENTSO-E and FTI-CL Energy's expertise.

measure value of storage

in Energy Transition.

To quantify the increase in Greek welfare as a result of the Investment, we followed ENTSOG's CBA methodological guidelines, and computed 4 metrics

Overview of approach used to quantify the welfare impact of the Investment, through its main monetized benefits

ENTSOG	Period	Approach	Metrics used	Combination
ENTSOG: Recommended Methodology for CBA for Gas Infrastructure Projects (2018, 2 nd version).	From 2027 (Expected commissioning); to 2050 (End of ENTSOG & ENTSOE forecasts).	Modelling of welfare impacts of Investment in the power and gas markets across Europe, hour by hour.	 Greek <u>gas</u> consumers externality based on wholesale market price change. Greek <u>power</u> consumers externality based on wholesale market price change. Greek <u>storage</u> margin created for storage operator and users. 	Annual benefits are discounted to decision time (2021) using a 4% annual real social discount rate (Recommended value of ENTSOG CBA Methodology).
Approach developed for gas pipelines, used here as guiding principle. No specific ENTSOG methodology available to	2051 to decom- missioning	Residual value of Investment until end of technical life of the Investment.	δ Annual <u>depreciation</u> of the Investment in Greece, used a measure of benefits (as recommended in ENTSOG CBA Methodology)	

The Plexos model allows us to quantify the metrics impacted by the storage creation: wholesale price reduction (externalities) and private trading benefits

Focus on a typical storage impact - Illustrative

On top of normal conditions, we have considered six stress scenarios to measure the security of supply value under a range of circumstances

Overview of stress tests conducted

		European Demand			European Supply			Extra Europe prices		
		Climate event	Infra. outage	Loss of demand	Climate event	Infra. outage	Loss of supply	Price level	Price volatility	-
		Cold Spell Heat Made			lowwird	MMARE OUTOR	poine see this or horos	201 TRONGES	202 in the seat	
А	Gas price volatility as in 2021							\checkmark		
В	Pronounced pan-European 2-week cold spell	✓							\checkmark	
С	Pronounced pan-European 2-week cold spell & part power line outage	\checkmark				\checkmark			\checkmark	
D	Pronounced heat wave as in 2021 & part power lines outage	\checkmark			\checkmark	\checkmark				
E	Azeri interruption (based on scenario Γ2b from RAE's 2020 National Risk Assessment Study)						\checkmark			PAE RAE PRIMETRIA MODILI
F	Reduced pipeline supply to Greece & no LNG (based on scenario B5b from RAE's 2020 National Risk Assessment Study)						Based on RA	AE's 2020 Natio	onal Risk Asse	16

Stress cases "A" to "D" were constructed based on historical precedents, and stress cases "E" and "F" based on RAE's 2020 National Risk Assessment Study

Description of stress tests and associated high-level likelihood of occurring

Stress scenario A Gas price volatility as in 2021		Storyline	High-level annual likelihood	Source of likelihood estimate
		European gas prices experience unusually high volatility, fuelled by energy transition uncertainty.	~10%	2 main events had a significant impact on gas prices volatility over the past 20 years: Fukushima in 2011 and the recent gas price spike in 2021: we assume price spikes are a one in ten year event = 10%.
В	Pronounced pan-European 2- week cold spell	A two week cold spell event is observed in February.	23%	ENTSOE calculates that, since 1981, 23.5% of years have been cold years. We assume similar occurrence in the future and adjust from 23.5% to 23% to account for stress scenario C which is also built on a cold year.
С	Pronounced pan-European 2- week cold spell & part power line outage	Same as scenario "B" but together with a power infrastructure outage.	0.5%	We rely on the same weather likelihood as in stress scenario B (23.5%). We multiply this figure by an estimate of the likelihood of power outage (2%) derived from historic data on power interconnection unavailability. 23.5%*2%=0.5%
D	Pronounced heat wave as in 2021 & part power lines outage	A two week heatwave is observed in June/July in line with 2021 events in Greece together with limited availability of wind capacity.	1%	ENTSOE calculates that, since 1981, 50% of years have been warm years. We assume similar occurrence in the future. We multiply this figure by the estimate of likelihood power interconnections unavailability as in scenario "C" . High-level likelihood = 50% * 2% = 1% .
Ε	Azeri interruption	Azeri transit (TANAP) is interrupted leading also to a full curtailment at Kipi. This scenario is based on Γ2b scenario from RAE 2020 National Risk Assessment Study.	5%	RAE's Scenario Γ2b is similar to Scenario E, but scenario Γ2b is more extreme as it assumes additionally a partial unavailability of LNG imports. We therefore use scenario Γ2b's probability (5%) as lower bound for scenario E's high- level likelihood.
F	Reduced pipeline supply to GR & no LNG	Pipeline import capacity is significantly reduced in Greece, reflecting severe network outages. This scenario is based on B5b scenario from RAE 2020 National Risk Assessment Study.	2%	RAE's Scenario B5b is similar to Scenario F, but scenario B5b is more extreme as it assumes outages lasting a full winter (6 months duration), while scenario F only assumes an outage for 1 peak month. We therefore use scenario B5b's probability (2%) as lower bound for scenario F's high-level likelihood.

In the Full Investment, margin created from storage and externalities in normal conditions bring more than half of the measured benefits

Welfare benefits and costs of the Full Investment in Greece – Discounted values in million EUR₂₀₂₁

- 1) Stress case benefits are calculated and compared to normal conditions benefits to present here only the additional welfare creation in the stress case.
- 2) We have estimated annual stress case results by assuming that the values computed for 2027 with Plexos would decrease linearly to zero by 2050. 2027 could be expected to be most impactful year due 18 to the generally declining role of gas imports over time.
- 3) We assume that the OPEX of DESFA's pipelines pre and post Investment are the same because volumes flown are very similar: only storage OPEX have been included them in this analysis as extra costs.
- 4) The realisation of the Investment could also bring non-monetised benefits as discussed in Section 1 of this deck.

In the Full Investment, total welfare benefit is 481m EUR over 2027-2050 under normal conditions

Externalities and private benefits in Greece – Full Investment - 2027 to 2050 – Discounted values in EUR₂₀₂₁

- Values discounted to 2021, using an annual discount rate of 4% (Recommended value of ENTSOG CBA Methodology).
- The benefit in gas and power is calculated as the delta of the wholesale price pre and post investment multiplied by the demand in both segments separately.
- Based on yearly independent modelling runs from 2027 to 2050.

Notes:

Conservatively, the surplus linked to a variation in quantities of **power** is not included here, only surplus linked to a variation in prices is accounted for at this stage, taking into account the minimum demand volume.

In the Full Investment, the stress cases show that externalities and storage margins both contribute to Security of Supply benefits

Summary of stress conditions results – 750 EUR m network upgrade – Additional welfare benefits multiplied by high-level likelihood – EUR₂₀₂₁ m

	α	α	β	γ	
Stress conditions	Gas externalities	Avoided gas shortages	Power externalities	Margin created by storage	Total
A. Gas price volatility as in 2021	10		22	46	77
B. Pronounced pan-European 2- week cold spell	15		26	103	144
C. Pronounced pan-European 2- week cold spell & part power line outage	1		2	2	5
D. Pronounced heat wave as in 2021 & part power lines outage	0		0	0	1
E. Azeri interruption	0		2	5	7
F. Reduced pipeline supply to Greece & no LNG	7	45	7	1	59
	L	γ]		
		∑ = 136		∑ = 157	∑ = 293

Notes on computation:

- 1) Stress case benefits are calculated and compared to normal conditions benefits to present here only the additional welfare creation in the stress case. We assume these additional benefits are realized in the middle of the year.
- 2) We have estimated annual stress case results by assuming that the values computed for 2027 with Plexos would decrease linearly to zero by 2050. 2027 could be expected to be most impactful year due to the generally declining role of gas imports over time. This estimation may however be conservative in terms of benefits given the expected peak gas consumption in Greece in the early 2030s.

In the Partial Investment, margin created from storage and externalities in normal conditions bring more than half of the measured benefits

Welfare benefits and costs of the Partial Investment in Greece – Discounted values in million EUR₂₀₂₁

- 1) Stress case benefits are calculated and compared to normal conditions benefits to present here only the additional welfare creation in the stress case.
- 2) We have estimated annual stress case results by assuming that the values computed for 2027 with Plexos would decrease linearly to zero by 2050. 2027 could be expected to be most impactful year due ²¹ to the generally declining role of gas imports over time.
- 3) We assume that the OPEX of DESFA's pipelines pre and post Investment are the same because volumes flown are very similar: only storage OPEX have been included them in this analysis as extra costs.
- 4) The realisation of the Investment could also bring non-monetised benefits as discussed in Section 1 of this deck.

5

In the Partial Investment, total welfare benefit is 446m EUR over 2027-2050 under normal conditions

Externalities and private benefits in Greece – Partial Investment - 2027 to 2050 – Discounted values in EUR₂₀₂₁

- Values discounted to 2021, using an annual discount rate of 4% (Recommended value of ENTSOG CBA Methodology).
- The benefit in gas and power is calculated as the delta of the wholesale price pre and post investment multiplied by the demand in both segments separately.
- Based on yearly independent modelling runs from 2027 to 2050.

Notes:

Conservatively, the surplus linked to a variation in quantities of **power** is not included here, only surplus linked to a variation in prices is accounted for at this stage, taking into account the minimum demand volume.

In the Partial Investment, the stress cases show that externalities and storage margins both contribute to Security of Supply benefits

Summary of stress conditions results – 422 EUR m network upgrade – Additional welfare benefits multiplied by high-level likelihood – EUR₂₀₂₁ m

	α	α	β	γ	
Stress conditions	Gas externalities	Avoided gas shortages	Power externalities	Margin created by storage	Total
A. Gas price volatility as in 2021	6		14	45	64
B. Pronounced pan-European 2- week cold spell	14		22	101	138
C. Pronounced pan-European 2- week cold spell & part power line outage	1		2	2	5
D. Pronounced heat wave as in 2021 & part power lines outage	0		0	0	1
E. Azeri interruption	0		2	4	7
F. Reduced pipeline supply to Greece & no LNG	7	45	6	1	59
	L	γ		_]	
		∑ = 121		∑ = 153	∑ = 27 4

Notes on computation:

- 1) Stress case benefits are calculated and compared to normal conditions benefits to present here only the additional welfare creation in the stress case. We assume these additional benefits are realized in the middle of the year.
- We have estimated annual stress case results by assuming that the values computed for 2027 with Plexos would decrease linearly to zero by 2050. 2027 is generally expected to be most impactful year due to the generally declining role of gas imports over time. This estimation may however be conservative in terms of benefits given the expected peak gas consumption in Greece in the early 2030s.

1. Context

FTI Consulting was mandated by DESFA to quantify the net welfare benefits in Greece of building the South Kavala storage based on a simulation of future gas and power markets from 2027 to 2050

Section summary

A Mandate

DESFA asked FTI Consulting to quantify the net welfare benefits in Greece of building an Underground Gas Storage (UGS) facility at South Kavala and related network upgrades:

- South Kavala storage will have a working gas volume of 6,360 GWh.
- The network upgrades cover eight pipelines from Kipi to Patima which have between 60 to 245 GWh/day of current capacity.

B Approach

- i. We quantified the net welfare benefits following ENTSOG's Cost Benefit Analysis (CBA) methodological guidelines, estimating:
 - The impact of the storage and related network upgrades (the Investment) on gas and power wholesale prices, and
 - The storage margin created for storage operator and storage users.

In addition, we note that the realisation of the Investment could also bring non-monetised benefits.

- i. We simulated the gas and power markets, from commissioning date in 2027 to 2050, with and without the Investment to quantify the Investment's welfare creation.
- ii. Gas regulators place a value on security of supply, adopting a risk-adverse position.
- iii. We therefore quantified welfare creation in a central case reflecting normal conditions as well as in six stress cases to measure the security of supply value on top of these normal conditions.

С

DESFA's Investment scenarios

- i. We have been instructed by DESFA to consider a "small" and a "large" Investment scenarios of 422 M€ and 750 M€ CAPEX respectively.
- ii. DESFA defined the Greek network configurations in both Investment scenarios, which included other expected infrastructures to be realized in line with its Ten-Year Development Plan.

DESFA asked FTI Consulting to quantify the net welfare benefits in Greece of building a UGS facility at South Kavala and related network upgrades

Overview of Investment required for an Underground Gas Storage (UGS) at South Kavala

Storage

South Kavala storage creation:

 Working Gas Volume = 530 mil. m3 (or 6,360 GWh)

Network Upgrades

The network upgrades concern the following eight pipelines from Kipi to Patima:

- 1. Kipi-Komotini
- 2. Komotini-Kavala
- 3. Kavala-Karperi
- 4. Karperi-Drymos
- 5. Drymos-Nea Messimvria
- 6. Nea Messimvria-Ampelia
- 7. Ampelia-Livadia
- 8. Livadia-Patima

Note: Commissioning dates of both storage and network upgrades are in 01/2027

Source: Entsog and DESFA

В

Our approach compares (i) welfare benefits created in the gas and power markets by the Investment to (ii) the costs of the Investment

Overview of benefits and costs used in FTI Consulting's economic assessment of the Investment

	Benefits	Costs
Monetized	 Externalities Impact on gas wholesale prices. Impact on power wholesale prices. Storage margin created for storage operator and storage users. 	 Storage OPEX CAPEX Network upgrade Extra CAPEX Extra OPEX
Non- monetized	 The realisation of the Investment could also theoretically produce the following benefits that we have not been monetized in this study: Reduce the volatility of gas prices in Greece, which would in turn reduce the premium charged by producers and traders to consumers for reducing price risks. As part of this premium is charged by non-EU exporters of gas, the reduction of the premium would benefit EU players; and/or Reinforce DESFA's grid and support the feasibility of other investments which require additional network capacity, e.g. Alexandroupolis' LNG terminal, TAP's expansion, etc.; and/or Brings more liquidity to the wholesale gas market, increasing the quality of the price signals. 	N/A
		27

We simulated the gas and power markets from commissioning date to 2050 with and without the Investment to quantify the Investment's welfare creation

Illustration of quantification of welfare benefits: wholesale market externalities

measure value of storage

in Energy Transition.

B

We quantified the increase in Greek welfare as a result of the Investment following ENTSOG's CBA methodological guidelines

Overview of approach used to quantify the welfare impact of the Investment, through its main monetized benefits

ENTSOG	Period	Approach	Metrics used	Combination
ENTSOG: Recommended Methodology for CBA for Gas Infrastructure Projects (2018, 2 nd version).	From 2027 (Expected commissioning); to 2050 (End of ENTSOG & ENTSOE forecasts).	Modelling of welfare impacts of Investment in the power and gas markets across Europe, hour by hour.	 Greek <u>gas</u> consumers externality based on wholesale market price change. Greek <u>power</u> consumers externality based on wholesale market price change. Greek <u>storage</u> margin created for storage operator and users. 	Annual benefits are discounted to decision time (2021) using a 4% annual real social discount rate (Recommended value of ENTSOG CBA Methodology).
Approach developed for gas pipelines, used here as guiding principle. No specific ENTSOG methodology available to	2051 to decom- missioning	Residual value of Investment until end of technical life of the Investment.	δ Annual <u>depreciation</u> of the Investment in Greece, used a measure of benefits (as recommended in ENTSOG CBA Methodology)	

E N E R G Y

Gas regulators place a value on security of supply, adopting a risk-adverse position

Principles supporting value on security of supply

Evidence of value of security of supply in the EU and Greece (examples)

European Gas Directive¹⁾

"The security of energy supply is an essential element of public security and is therefore inherently connected to the efficient functioning of the internal market" (Recital 22)

"Member States shall ensure the monitoring of security of supply issues. [...]. The competent authorities shall publish, by 31 July each year, a report outlining the findings resulting from the monitoring of those issues, as well as any measures taken or envisaged to address them and shall forward that report to the Commission forthwith." (Article 5)

European Gas Regulation²⁾

"Each Member State or, where a Member State so provides, its competent authority shall ensure that the necessary measures are taken so that in the event of a disruption of the sinale largest gas infrastructure. the technical capacity of the remaining infrastructure [is able] to satisfy total gas demand of the calculated area during a day of exceptionally high gas demand occurring with a statistical probability of once in 20 years. This shall be done taking into account gas consumption trends, the long-term impact of energy efficiency measures and the utilisation rates of existing infrastructure." (Article 5)

Regular reporting

Point of view of Risk aversion

Regulation does place a value on security of supply, mandating certain costs to be incurred to ensure the security of gas supplies.

This defines decisionmakers as risk adverse, as security of supply is notably defined as resilience to extreme events.

1) Directive 2009/73/EC of The European Parliament and of the Council of 13 July 2009concerning common rules for the internal market in natural gas and repealing Directive 2003/55/EC

2) Regulation (EU) 2017/1938 of the European Parliament and of the Council of 25 October 2017 concerning measures to safeguard the security of gas supply and repealing Regulation (EU) No 994/2010

COMPAS ENERGY

In line with regulatory approaches, we quantified the security of supply value brought by the Investment using extreme events

Approach to capture value put on security of supply

Illustration of stress system conditions

We relied on a central case reflecting normal conditions, and six stress cases to measure the security of supply value on top of these normal conditions

Principles of modelling for central case and security of supply cases

Central case – Normal conditions

- Full availability of import pipeline and LNG terminals.
- Full availability of import power lines and standard availability of power plants.
- Likely weather condition: based on most likely weather conditions based on past 34 years, as measured in the TYNDP.
- Historic gas supply cost profile from the last decade replicated in the future.

Security of supply cases – Stress conditions

Combinations of stress conditions on gas and power system:

- Gas supply interruptions (TANAP, LNG...).
- Partial gas infrastructure unavailability (interconnections, DESFA system...).
- Partial power infrastructure unavailability (interconnections, power plants...).
- Extreme climatic conditions (heat wave, low wind...).
- Upper bound of gas market price dynamics (high prices, high volatility...).

Expected to measure the central case impact of the Investment in **normal system conditions**

Expected to measure additional impacts of the Investment in <u>stress system conditions</u>

Note: TYNDP always refers to Ten-Year Network Development Plan 2020 (latest available) published by ENTSOE and ENTSOG. Next TYNDP expected in 2022.

We have been instructed by DESFA to consider two technically feasible Investment scenarios, with different scopes for the network upgrade

Overview of Investment scenarios

Partial Investment scenario, with 422 M€ network upgrade

vork upgrade Full Investment scenario, with 750 M€ network upgrade

Source: ENTSOG and DESFA

Note: A network upgrade more limited than the Partial Investment scenario was also envisaged by DESFA, but such limited upgrade would have required to significantly constrain the storage use, and therefore was not retained as appropriate by DESFA.

E N E R G Y

Alexandroupolis

DESFA defined network configurations in both Investment scenarios, and other infrastructures expected realised, in line with its Ten-Year Development Plan

Base and Investment cases considered to measure the impact of South Kavala UGS

• **Russia** through Karperi

		Base Case		Investment Cases			
South Kavala UGS		Not operational		Operational – CAPEX 272 M€ and OPEX 0.3 €/MWh			
DESFA's	GWh/Day	Current pipe	urrent pipelines capacity		Investment – CAPEX 422 M€		CAPEX 750 M€
network	HP Pipelines	Max Daily Flow	Max Daily Flow Back	Max Daily Flow	Max Daily Flow Back	Max Daily Flow	Max Daily Flow Back
	Kipi → Komotini	60	63.6	60	172	268	267
	Komotini 🔿 Kavala	60	63.6	60	172	268	267
	Kavala 🔿 Karperi	60	63.6	168	148	268	267
	Karperi -> Drymos	183.6	183.6	292	268	392	387
	Drymos 🔿 Nea Messimvria	183.6	244.2	292	268	392	387
	Nea Messimvria 🔿 Ampelia	238.8	244.2	348	245	448	373
	Ampelia -> Livadia	238.8	244.2	348	245	448	373
	Livadia 🔿 Patima	238.8	244.2	348	245	448	373
				No significant	extra OPEX compared	d to Base Case, given	similar flows
Import		All existing	and projected infi	rastructures operat	ional (in line with	DESFA's Ten Year D	evelopment Plan)
infrastruc	ctures	Pipeline i	Pipeline imports		LNG impo	ort terminals	
		Azerba	ijan through Nea I	Vessimvria	Revithc	oussa	
		 Turkey 	through Kipi		 Dioriga 		34

2. Simulation tool

The 2027-2050 simulation of gas and power prices relies on a pan-European Plexos model, using principally ENTSOG & ENTSOE's TYNDP data

Section summary

A Plexos' market simulation tool

- i. We use a Plexos gas & power model built for DESFA. Plexos software is used by ENTSOG and ENTSOE for TYNDP.
- ii. Our model accounts for all gas and power infrastructure, supply and demand across Europe.
- iii. We treat the Greek gas system with more granularity than the rest of Europe.

B Main input hypotheses

- i. Gas:
 - For **demand** inputs, we rely primarily on DESFA's Development Study and ENTSOG's TYNDP data.
 - For **supply** inputs, sources differ depending on indigenous production and extra EU imports.
 - We use DESFA's current and forecasted-for-the-Investment gas transport capacity in Greece, and ENTSOG's current and TYNDP-forecasted transport data capacity for Europe.
- ii. Power:
 - For **demand** inputs, we rely primarily on ENTSOE's TYNDP data.
 - For **supply inputs**, our model relies on a dispatch optimisation applied to long term capacity scenarios.
 - We created a transmission database referencing historic Net Transfer Capacities and future interconnection projects based on ENTSO-E data and our own expertise

Plexos platform is used by ENTSOG and ENTSOE for the TYNDP

Main features of the gas & power integrated model built for DESFA's CBA

Plexos model

- Mixed Integer Linear Programming model.
- Platform used by ENTSOG & ENTSOE for TYNDP.
- Modelling from 2027 to 2050.
- Regular backcast of the power leg of the model., which has been used in major energy projects in Europe by FTI-CL energy.

Hourly modelling run

- Yearly independent modelling runs from 2027 to 2050.
- 8760 hours * 24 years = 210,240 optimisations, run together on a weekly basis.

ENTSOG chooses PLEXOS to model the European gas system

The model accounts for all gas infrastructure, supply and demand across Europe, with additional granularity for the Greek gas system

Focus on gas

Overview

- FTI-CL Energy's gas market model covers the EU-27 countries as well as the UK, Switzerland, Norway and the Balkans.
- The model considers supply stacks of European indigenous gas fields, as well as stacks of Russia, Azerbaijan and Algeria's gas fields.
- The model determines endogenously:
 - The hourly marginal price ensuring demand is served by supply
 - Hourly flows at every gas node across Europe
 - Gas demand for power generation as a result of the gas and power optimisation process
- The model considers cross-border transport constraints across Europe.
- The model also considers Power2Gas and battery capacities as required for power security of supply.

Source: FTI-CL Energy

The model accounts for all power infrastructure, supply and demand across Europe

Focus on power

Overview

- FTI-CL Energy's power market model covers the EU-27 countries as well as the UK, Switzerland, Norway and the Balkans.
- FTI-CL Energy's power market model constructs supply in each price zone based on aggregated power plants:
 - Zonal prices are determined as the marginal value of energy accounting for generators' bidding strategies.
 - The model takes into account crossborder transmission and interconnectors, and unit-commitment plant constraints across Europe.
 - The model also provides hourly prices and flows at every power node across Europe.
- FTI-CL Energy's power market model uses ENTSOE Pan-European Climate Database for hourly time series for wind and solar production, hydro inflows and demand pattern.

Geographic scope

Our integrated gas & power model considers a granular mapping of Greece

Map of Greece and neighbouring countries gas and power main infrastructures – From Plexos model

Source: Plexos and FTI-CL

B Main input hypotheses

Our model relies primarily on ENTSOG & ENTSOE data, with specific complements from DESFA for Greece

Main sources used

Gas

Demand

- Annual demand DESFA's Development Study and ENTSOG's TYNDP.
- Daily demand profile
 University College Cork
 Plexos' gas model
 ("UCC").

Supply

Volume and prices

- Volume and cost of indigenous gas supply in Europe by Rystad.
- Russian export prices based on expected strategy to be competitive in major
 European markets vs. LNG.
- LNG price based on IEA and ICIS data.

Infrastructure

Pipelines' capacity

- DESFA's Development Study 2021-2030; and
- ENTSOG TYNDP 2020 Low Scenario (includes existing infrastructure and post-FID infrastructure).

Power

- Annual demand
- National Energy and Climate Plan (NECP) demand scenarios.
- EU Commission Energy Roadmap 2050.
- Daily demand profile
 - ENTSOE'S TYNDP data.

Long term capacity scenarios 5 derived from:

- Dynamic long-term optimization; combined with
- Long term capacity scenarios based on energy policies and regulation.

Short term capacity scenarios derived from:

 Hourly supply in each price zone based on aggregated plants constraints.

Transmission' lines capacity 6

 Based on the ENTSO-E and FTI-CL Energy's expertise. В

For Gas Demand inputs, we rely primarily on DESFA's Development Study and ENTSOG's TYNDP data

Gas demand - Sources and assumptions

	Annual demand	Daily demand profiles			
Greece	 DESFA's Development Study 2021-2030. ENTSOG'S TYNDP data (2040 Global Ambition scenario). Interpolation for each year between each five year data point. Similar growth rate from 2040-2050 than from 2030-2040. 	 Daily profile taken from the UCC which provides daily profiles for each country 2025, 2030 and 2040. 			
	 Demand is split at each demand point proportionate to exit capacity. 				
Albania	 Grant Thornton's average demand for 2021-2030; growth rate assumed to continue up to 2050. 	 Daily profile from UCC. 			
	-				
Rest of Europe	 ENTSOG'S TYNDP data (National Trends scenario for 2025; Global Ambition scenario for 2030 and 2040). Interpolation for each year between each five year 	 Daily profile from UCC. 			
	data point.				

E N E R G Y

For Gas Supply inputs, sources differ depending on indigenous production and imports

Gas supply - Sources and assumptions

Europe indigenous production

Fossil Methane

В

 Current and forecasted volume and production cost of each gas field taken from Rystad for GB, IT, DE, RO, NO, NL and other EU countries

Biomethane

- Eurostat for 2020 data.
- ENTSOG'S TYNDP (Global Ambition scenario).
- Daily production profile taken from UCC.
- Cost expected to be covered by out of market payment (i.e. bid at 0 EUR/MWh).

Hydrogen

- ENTSOG'S TYNDP data: median scenario between ENTSOE TYNDP 2020 Global Ambition and Distributed Generation scenarios.
- Cost expected to be covered by out of market payment (i.e. bid at 0 EUR/MWh).
- H2 production as mixture of baseload and flexible production.

Pipeline imports to Europe

Contracted volumes

- Contracted volumes from Cedigaz Long-Term contracts database for RU, DZ, AZ and TR.
- Price for DZ and AZ based on estimates of Long-Run Marginal Cost from the IEA.
- Price for RU based on expected strategy to be competitive in major European markets vs. LNG imports (85% of LNG prices).
- Price for TR based on (and more expensive than) RU's prices.

Uncontracted volumes

- RU: S&P Platts Russian production / exports forecasts.
- **DZ:** CREG gas exports forecast.

LNG imports to Europe

Volumes

 LNG terminals capacity (existing or planned) in all Europe as per Gas Infrastructure Europe data.

Prices

- Annual price computed as average of (1) variable cost of US liquefaction and of (2) a standard Asian oil-based price formula for annual price, from IEA
- Daily price computed using average daily prices for East Asian spot LNG over 2013-2021, from ICIS, applied to annual price

В

We use DESFA's current and Investment gas transport capacity in Greece and ENTSOG's current and forecasted transport data capacity for Europe

Gas infrastructure - Sources and snapshot

Transport pipelines in 2027 and 2050

		Current pipe	lines capacity	Investment –	CAPEX 422 M€	Investment –	CAPEX 750 M€
reece	HP Pipelines	Max Daily Flow	Max Daily Flow Back	Max Daily Flow	Max Daily Flow Back	Max Daily Flow	Max Daily Flow Back
	Kipi 🔿 Komotini	60	63.6	60	172	268	267
	Komotini → Kavala	60	63.6	60	172	268	267
: DESFA	Kavala 🔿 Karperi	60	63.6	168	148	268	267
	Karperi → Drymos	183.6	183.6	292	268	392	387
	Drymos → Nea Messimvria	183.6	244.2	292	268	392	387
	Nea Messimvria -> Ampelia	238.8	244.2	348	245	448	373
	Ampelia → Livadia	238.8	244.2	348	245	448	373
	Livadia \rightarrow Patima	238.8	244.2	348	245	448	373

	Year	2027	2050	Year	2027	2050	Year	2027	2050
Rest of	RU-DE	3,533	3,533	NO-NL	964	964	NO-BE	488	488
Europe	DE-CZ	2,526	2,526	BY-DE	932	932	BY-PL	452	452
•	RU-SK	2,278	2,278	BE-FR	870	870	IT-CH	441	441
	SK-AT	1,570	1,570	BE-GB	803	803	LY-IT	440	440
Source: ENTSOG	NO-GB	1,499	1,499	DZ-ES	732	732	DE-BE	439	439
Scenario (existina	UA-BG	1,472	1,472	GB-BE	652	652	SK-UA	416	416
and approved FID	NL-BE	1,437	1,437	CH-IT	635	635	BG-RS	415	415
infrastructures)	CZ-DE	1,414	1,414	DE-FR	620	620	SK-CZ	400	400
	NO-DE	1,247	1,247	FR-DE	620	620	GB-IE	387	387
Note: 70 pipelines	CZ-SK	1,247	1,247	NO-FR	590	590	DE-AT	383	383
capacity of less than	DZ-IT	1,150	1,150	AT-DE	548	548	UA-RO	371	371
300 GWh/day not	AT-IT	1,149	1,149	UA-HU	517	517	BG-BG	344	344
represented here.	RU-BY	1,024	1,024	DE-NL	503	503	BY-LT	325	325
	NL-DE	977	657	NL-GB	494	494	DE-CH	318	318

В

For Power Demand inputs, we rely primarily on ENTSOE's TYNDP data, which includes EU net zero by 2050, and high electric renewable penetration

Power demand – Sources and assumptions

Annual dem		Daily demand profiles			
Greece	•	National Energy and Climate Plan (NECP) demand scenarios (from 2021 to 2030); European Commission Energy Roadmap 2050 (from 2030 to 2050).	All countries	•	ENTSOE'S TYNDP data (National Trends load profile); We apply these daily profile to annual total demand through 2050 in all countries.
Rest of Europe	•	FTI analysis and benchmark based on the European Commission Energy Roadmap 2050.			

E N E R G Y

Our power market model relies on a dispatch optimisation applied to long term capacity scenarios

Power supply - Sources and assumptions

Long term capacity scenarios

Long term capacity scenarios can be derived from two distinct approaches:

- Dynamic long-term optimisation: Based on cost reduction assumptions, the capacity mix is optimized to minimise the cost of the system while meeting a number of constraints such as security of supply or CO2 emission reduction target.
- Long term capacity scenarios based on energy policies and regulation: Capacity projections are based on national and European energy policies and regulation which would structure the evolution of the capacity mix (coal closure policies, nuclear policies, renewable policies, etc.)

Our modelling approach combines both long-term capacity scenarios based on energy policies and regulation and dynamic long-term optimisation through:

- National energy and climate plans renewable development until 2030.
- Coal and nuclear phase-down plan through 2050.
- European emission reduction to net zero by 2050.
- National **power system reliability** through minimum margin.

Short term dispatch optimization

We constructed hourly supply in each price zone based on aggregated plants unit commitment constraints:

- European power plants database containing technical parameters of all thermal European plants.
- Zonal prices are found as the marginal value of energy accounting for generators' bidding strategies.
- Model takes into account cross-border transmission and interconnectors.

Illustrative example of a supply cost curve

Demand

В

We created a transmission database referencing historic NTCs and future interconnection projects based on the ENTSO-E data and our expertise

Power infrastructure - Sources and snapshot

Transmission lines in 2027 and 2050

rooco and	Year	2027	2050	Year	2027	2050
Best of	AT-DE	7.500	8.500	LUG-DE	2,300	2.300
Furone	ES-FR	5,000	9,000	CZ-SK	2,000	3,000
Luiope	CH-DE	4,600	8,600	DE-PLI	2,000	4,000
	DE-FR	4,500	7,000	ITCN-ITCS	2,000	6,150
Source:	DE-NL	4,400	6,000	SI-HR	2,000	2,500
ENTSO-E data	ITN-ITCN	4,400	8,400	ITN-CH	1,910	4,100
Energy	FR-ITN	4,350	6,000	HU-SK	1,800	2,800
Litergy	ES-PT	4,200	5,800	DKE-SE	1,700	3,100
Note: 43	FR-GB	4,000	7,400	HU-HR	1,700	1,700
pipelines with a	NO-SE	3,595	4,095	DKW-NO	1,632	3,700
aally max capacity of less	DE-DKW	3,500	3,500	ITCA-ITSIC	1,500	1,500
than 840	BE-NL	3,400	6,400	DE-NO	1,400	1,400
MW/day not	FI-SE	3,200	6,500	GB-DE	1,400	1,400
here.	FR-CH	3,200	5,700	GB-DKW	1,400	1,400
nere:	ITCA-ITS	2,850	4,850	GB-NO	1,400	2,800
	BE-FR	2,800	4,800	BG-GR	1,350	3,250
	CZ-DE	2,600	4,100	HU-RO	1,300	2,200

3. Methodology for welfare quantification

The Investment brings welfare through wholesale gas and power externalities and private trading benefits

Section summary

A Quantified welfare benefits in normal conditions

- i. We quantified the increase in Greek welfare as a result of the Investment following ENTSOG's CBA methodological guidelines.
- ii. Namely, we quantified:
 - The impact on gas wholesale prices.
 - The impact on power wholesale prices.
 - The storage margin created for storage operator and storage users.
- iii. We quantified Greek welfare benefits of the Investment based on modelled gas and power prices in a central normal conditions scenario, comparing results with and without the Investment.

B Quantified welfare benefits in stress conditions

i. To capture **security of supply value**, we quantified the Greek welfare benefits based on modelled gas and power prices in stress conditions, comparing results with and without the Investment, and identifying the additional welfare benefits thus produced compared to normal conditions.

From 2027 to 2050, we explicitly model the power and gas markets to assess welfare creation

Overview of approach used to quantify the welfare impact of the Investment, through its main monetized benefits

ENTSOG	Period	Approach	Metrics used	Combination
ENTSOG: Recommended Methodology for CBA for Gas Infrastructure Projects (2018, 2 nd version).	From 2027 (Expected commissioning); to 2050 (End of ENTSOG & ENTSOE forecasts).	Modelling of welfare impacts of Investment in the power and gas markets across Europe, hour by hour.	 α Greek <u>gas</u> consumers externality based on wholesale market price change. β Greek <u>power</u> consumers externality based on wholesale market price change. γ Greek <u>storage</u> margin created for storage operator and users. 	Annual benefits are discounted to
2"ENTSO Methodology for Cost-Benefit Analysis of Gas Infrastructure Projects		Focus of th	is section	(2021) using a 4% annual real social discount rate (Recommended value of ENTSOG CBA Methodology).
Approach developed for gas pipelines, used here as guiding principle. No specific ENTSOG methodology available to measure value of storage	2051 to decom- missioning	Residual value of Investment until end of technical life of the Investment.	δ Annual <u>depreciation</u> of the Investment in Greece, used a measure of benefits (as recommended in ENTSOG CBA Methodology)	50

in Energy Transition.

E N E R G Y

Reminder: We relied on a central case reflecting normal conditions, and six stress cases to measure the security of supply value on top of these normal conditions

Principles of modelling for central case and security of supply cases

Central case – Normal conditions

- Full availability of import pipeline and LNG terminals.
- Full availability of import power lines and standard availability of power plants.
- Likely weather condition: based on most likely weather conditions based on past 34 years, as measured in the TYNDP.
- Historic gas supply cost profile from the last decade replicated in the future.

Expected to measure the central case impact of the Investment in **normal system conditions**

Security of supply cases – Stress conditions

Combinations of stress conditions on gas and power system:

- Gas supply interruptions (TANAP, LNG...).
- Partial gas infrastructure unavailability (interconnections, DESFA system...).
- Partial power infrastructure unavailability (interconnections, power plants...).
- Extreme climatic conditions (heat wave, low wind...).
- Upper bound of gas market price dynamics (high prices, high volatility...).

Expected to measure additional impacts of the Investment in stress system conditions

Note: TYNDP always refers to Ten-Year Network Development Plan 2020 (latest available) published by ENTSOE and ENTSOG. Next TYNDP expected in 2022.

Focus of next slides

The pipeline investment brings welfare through wholesale gas and power market price reduction (externalities)

ß

Focus on a typical externality impact - Illustrative α

Storage brings welfare through wholesale gas and power market price reduction (externalities) and private trading benefits

Focus on a typical storage impact - Illustrative

Summer Winter Price Price Consumers pay more inbut this is more than summer.... D² **C**² offset by winter price **ς**1 D^1 reductions... S^1 **S**² C^1 Price decrease R Price increase Λ D^1 ...and applies to every MWh of gas consumed, not just the storage Gas injected Quantity Gas withdrawn Quantity injection quantity. Such a reduction of gas prices has a direct impact on power prices which also decrease. Private impact – Storage margin shared between storage Externalities – Impact for all gas consumers α γ operator and storage clients ΔPrice <0 Revenues >0 $\Delta Price > 0$

Reminder: We relied on a central case reflecting normal conditions, and six stress cases to measure the security of supply value on top of these normal conditions

Principles of modelling for central case and security of supply cases

Central case – Normal conditions

- Full availability of import pipeline and LNG terminals.
- Full availability of import power lines and standard availability of power plants.
- Likely weather condition: based on most likely weather conditions based on past 34 years, as measured in the TYNDP.
- Historic gas supply cost profile from the last decade replicated in the future.

Security of supply cases – Stress conditions

Combinations of stress conditions on gas and power system:

- Gas supply interruptions (TANAP, LNG...).
- Partial gas infrastructure unavailability (interconnections, DESFA system...).
- Partial power infrastructure unavailability (interconnections, power plants...).
- Extreme climatic conditions (heat wave, low wind...).
- Upper bound of gas market price dynamics (high prices, high volatility...).

Expected to measure the central case impact of the Investment in **normal system conditions**

Expected to measure additional impacts of the Investment in <u>stress system conditions</u>

Focus of next slides

Note: TYNDP always refers to Ten-Year Network Development Plan 2020 (latest available) published by ENTSOE and ENTSOG. Next TYNDP expected in 2022.

We have considered six stress scenarios to cover some of the expected variations around normal market conditions

Overview of stress tests conducted

		European Demand			European	Extra Europe prices				
		Climate event	Infra. outage	Loss of demand	Climate event	Infra. outage	Loss of supply	Price level	Price volatility	_
		Cold Spell Heat Mare			Lowwird	WWH BE OUTOBE DESUG	ADING CREEK HOI OF NOTOFIC	201 TKONES	201 ice of the set	
А	Gas price volatility as in 2021							\checkmark		
В	Pronounced pan-European 2-week cold spell	\checkmark							\checkmark	
С	Pronounced pan-European 2-week cold spell & part power line outage	\checkmark				\checkmark			\checkmark	
D	Pronounced heat wave as in 2021 & part power lines outage	\checkmark			✓	\checkmark				
Ε	Azeri interruption (based on scenario Γ2b from RAE's 2020 National Risk Assessment Study)						\checkmark			PAERAE
F	Reduced pipeline supply to Greece & no LNG (based on scenario B5b from RAE's 2020 National Risk Assessment Study)							.F's 2020 Natia	onal Rick Acce	55

PYOMIETIKH APXH ENEPTEINE

Stress cases "A" to "D" have been constructed based on historical precedents

Description of stress tests

Stress scenario		Storyline	Parameters			
A	Gas price volatility as in 2021	European gas prices experience unusually high volatility, fuelled by energy transition uncertainty.	Marginal European supplies (LNG & Russian pipeline imports) are priced following the same volatility as witnessed in 2021 European g prices: import prices are set following TTF spot prices of 2021.			
В	Pronounced pan- European 2-week cold spell	A two week cold spell event is observed in February.	Based on historic data, ENTSOE developed a climate database based on: precipitations, wind, temperatures, sun exposition, etc. As a result, ENTSOE defined three representative climate years: cold (1984), average (1982) and warm (2007).			
			We use here the 1982 weather conditions as they shows the strongest 2-week power demand in Greece due to the cold spell: Feb 2 to Feb 15. LNG and Russian gas priced during this period at the highest TTF prices observed in 2021 to reflect energy system tensions.			
С	Pronounced pan- European 2-week cold spell & part power line outage	Same as scenario "B" but together with a power infrastructure outage.	We consider an outage of the power lines connecting Greece with Bulgaria and North Macedonia on top of cold spell conditions.			
D	Pronounced heat wave as in 2021 & part power lines outage	A two week heatwave is observed in June/July in line with 2021 events in Greece together with limited	Out of the ENTSOE representative years, we use 2007 power profile (the warm year reference). This year displays the highest heat-related power demand in Greece. The peak demand occurs from Jun 20 to Jul 3. On top of these heat wave conditions, we curtail (i) wind at 5% of its total capacity and (ii) Greece's power connection with Bulgaria and			

North Macedonia.

availability of wind capacity.

E N E R G Y

Stress cases "E" and "F" have been constructed based on RAE's 2020 National Risk Assessment Study

Description of stress tests

Stress scenario	Storyline	Parameters				
E Azeri interruption	Azeri transit (TANAP) is interrupted leading also to a full curtailment at Kipi.	The scenario applies to the month with the highest non-power gas demand in Greece (Jan 3 – Feb 2).				
	This scenario is based on Γ2b scenario from RAE 2020 National Risk Assessment Study.					
F Reduced pipeline supply to GR & no LNG	Pipeline import capacity is significantly reduced in	We apply this scenario to the month with the highest non-power gas demand in Greece (Jan 3 – Feb 2).				
	Greece, reflecting severe	Such a scenario considers, through the whole month:				
	network outages.	i. Reduced import flow through Kipi, Nea Messimvria and Sidirokastro to 14.6 M m ² /day: and				
	scenario is based on B5b scenario from RAE 2020 National Risk Assessment Study.	ii. Full curtailment of LNG flows at all terminals.				

We have estimated a high-level likelihood for stress tests "A" to "D"

High-level likelihood estimates of the stress tests

Stress scenario		High-level annual likelihood	Source of likelihood estimate		
A	Gas price volatility as in 2021	~10%	Two main events had a significant impact on gas prices volatility over the past 20 years: Fukushima in 2011 and the recent gas price spike in 2021: we assume price spikes are a one in ten year event = 10%.		
В	Pronounced pan- European 2-week cold spell	23%	ENTSOE calculates that, since 1981, 23.5% of years have been cold years. We assume similar occurrence in the future and adjust from 23.5% to 23% to account for stress scenario C which is also built on a cold year.		
С	Pronounced pan- European 2-week cold spell & part power line outage	0.5%	 We rely on the same weather likelihood as in stress scenario B (23.5%) based on historic ENTSOE analysis. We multiply this figure by an estimate of the high-level likelihood of joint outage on BG-GR and NMK-GR power interconnections: We identified reliable historic data only for the BG-GR interconnection, with full unavailability evidenced on 4% of historic days. In the absence of reliable data for the NMK-GR interconnection, we assume some dependence 		
			 between the two interconnections, and make a qualitative assumption of a halving of the likelihood of both interconnections being unavailable compared to only BG-GR unavailable, therefore assuming a 2% likelihood for both BG-GR and NMK-GR power interconnection unavailable. This leads to a total likelihood of 23.5%*2%=0.5% 		
D	Pronounced heat wave as in 2021 & part power lines outage	1%	ENTSOE calculates that, since 1981, 50% of years have been warm years. We assume similar occurrence in the future. We multiply this figure by the high-level ₅₈ likelihood of BG-GR & NMK-GR power interconnections being both fully unavailable as in scenario "C" . High-level likelihood = 50% * 2% = 1%.		

We have also estimated a high level qualitative likelihood for stress tests "E" and "F"

High level qualitative likelihood estimates of the stress tests

Stress scenario	High level qualitative annual likelihood	Source of likelihood estimate		
E Azeri interruption	5%	n RAE's 2020 National Risk Assessment Study, scenario F2b has a 5% probability Scenario F2b is similar to Scenario E, but scenario F2b assumes a partial unavailability of LNG imports. On the contrary, scenario E assumes full LNG availability. Scenario E is therefore more likely than scenario F2b, as it is less extreme, with LNG infrastructure unaffected in scenario E.		
		E's high-level likelihood.		
Reduced pipeline	20/	In RAE's 2020 National Risk Assessment Study, scenario B5b has a 2% probability.		
supply to GR & no LNG	۷%	Scenario B5b is similar to Scenario F, but scenario B5b assumes an outage that lasts a full winter (6 months duration), while scenario F only assumes an outage for 1 month. Both scenarios assume an outage of reduced pipeline supply and no LNG, but scenario F assumes this for a period that is shorter and included in the longer period of scenario B5b: scenario F is thus less extreme than scenario B5b.		
		We therefore use scenario B5b's probability as lower bound estimate for scenario F's high-level likelihood.		

4. 750 €m investment scenario results

Normal conditions lead to EUR 481m of benefits, with stress conditions bringing additional value of EUR 293m, below costs at EUR 913m

Section summary

A Normal conditions

Total normal condition = EUR 481 m, out of which:

- Total externalities = EUR 171m
- Margin created from storage = EUR 214m
- Residual value = EUR 97m

Stress tests

Total stress tests = EUR 293 m, of additional benefits to normal conditions, out of which:

- Scenario A. Gas price volatility as in 2021 = EUR 77m
- Scenario B. Pronounced 2-week cold spell = EUR 144m
- Scenario C. Pronounced 2-week cold spell with part power lines outage = EUR 5m
- Scenario D. Pronounced heat wave as in 2021 and part power lines outage = EUR 1m
- Scenario E. Azeri interruption = EUR 7m
- Scenario F. Reduced pipeline supply to Greece & no LNG = EUR 59m

C CAPEX and OPEX

Total CAPEX + OPEX = EUR 913m, out of which:

- CAPEX pipelines = EUR 641m
- CAPEX storage = EUR 221m
- OPEX = EUR 51m

Note: All discounted values in million EUR₂₀₂₁. Some totals may not add up due to rounding.

Margin created from storage and externalities in normal conditions bring more than half of the measured benefits

Welfare benefits and costs of the Full Investment in Greece – Discounted values in million EUR₂₀₂₁

- 1) Stress case benefits are calculated and compared to normal conditions benefits to present here only the additional welfare creation in the stress case.
- 2) We have estimated annual stress case results by assuming that the values computed for 2027 with Plexos would decrease linearly to zero by 2050. 2027 could be expected to be most impactful year due ⁶² to the generally declining role of gas imports over time.
- 3) We assume that the OPEX of DESFA's pipelines pre and post Investment are the same because volumes flown are very similar: only storage OPEX have been included them in this analysis as extra costs.
- 4) The realisation of the Investment could also bring non-monetised benefits as discussed in Section 1 of this deck.

Normal conditions

E N E R G Y

Under normal conditions, total welfare benefit of the Full Investment is 481m EUR over 2027-2050

Externalities and private benefits in Greece – Full Investment - 2027 to 2050 – Discounted values in EUR₂₀₂₁

- Values discounted to 2021, using an annual discount rate of 4% (Recommended value of ENTSOG CBA Methodology).
- The benefit in gas and power is calculated as the delta of the wholesale price pre and post investment multiplied by the demand in both segments separately.
- Based on yearly independent modelling runs from 2027 to 2050.

Notes:

Conservatively, the surplus linked to a variation in quantities of **power** is not included here, only surplus linked to a variation in prices is accounted for at this stage, taking into account the minimum demand volume.

E N E R G Y

Following ENTSOG's methodology, the Investment's welfare post 2050 is estimated as the discounted depreciation of the residual value at end-2050

Quantification of externalities post 2050 – Full Investment

- As we model power and gas markets only until 2050, the end of the ENTSO-E/ENTOS-G TYNDP horizon, assets commissioned in 2027 will not have reached the end of their technical life, but they will provide value to the energy system, at least as options
- ENTSOG CBA guidelines recommend that beyond the simulation period benefits should be assumed equal to the residual accounting value of the Investment.
- We therefore computed the residual values of South Kavala UGS and related network upgrades investments using a linear accounting depreciation over the assets' technical life.
- Annual depreciation post 2050 is discounted back to 2021 using the ENTSOG recommended rate (4%)

Key assumptions we used in calc	Source	
CAPEX for Network upgrade	641m EUR₂₀₂₁ (750m EUR cash out over 2024-2026)	DESFA
CAPEX for Storage creation	221m EUR₂₀₂₁ (258m EUR cash out over 2024-2026)	HRADF study by Frontier Economics (2020) ¹⁾ , adjusted to EUR ₂₀₂₁
Commissioning year	2027	DESFA
Modelled life of the assets	Until 2050	ENTSOG/ENTSOE TYNDP (2020)
Technical life of the assets	40 years (network upgrade) 50 years (storage)	DESFA
Social discount rate	4%	ENTSOG 2 nd CBA Methodology

δ Residual values after 2050

- Network upgrade = 70 EUR₂₀₂₁ m
- Storage creation = 26 EUR₂₀₂₁ m
- Total = 97 EUR₂₀₂₁ m

Externalities and storage margins both contribute to Security of Supply benefits

Summary of stress conditions results – 750 EUR m network upgrade – Additional welfare benefits multiplied by high-level likelihood – EUR₂₀₂₁ m

	α	α	β	γ	
Stress conditions	Gas externalities	Avoided gas shortages	Power externalities	Margin created by storage	Total
A. Gas price volatility as in 2021	10		22	46	77
B. Pronounced pan-European 2- week cold spell	15		26	103	144
C. Pronounced pan-European 2- week cold spell & part power line outage	1		2	2	5
D. Pronounced heat wave as in 2021 & part power lines outage	0		0	0	1
E. Azeri interruption	0		2	5	7
F. Reduced pipeline supply to Greece & no LNG	7	45	7	1	59
	L	γ]		
		∑ = 136		∑ = 157	∑ = 293

Notes on computation:

- 1) Stress case benefits are calculated and compared to normal conditions benefits to present here only the additional welfare creation in the stress case. We assume these additional benefits are realized in the middle of the year.
- 2) We have estimated annual stress case results by assuming that the values computed for 2027 with Plexos would decrease linearly to zero by 2050. 2027 could be expected to be most impactful year due to the generally declining role of gas imports over time. This estimation may however be conservative in terms of benefits given the expected peak gas consumption in Greece in the early 2030s.

Value 0.276

Volume in each year

0.276*Volume in each year

Total CAPEX and OPEX sum EUR 913m

Computation of CAPEX and OPEX for the 750 EUR m network upgrade and Kavala building - EUR₂₀₂₁ m

CAPEX over 2024-2026

	CAPEX N	etwork upgrade	CAPEX Storage building		
Cash out	75	0m EUR ⁽¹⁾	258m EUR ⁽²⁾		
/early cash out	= 3 >	250m EUR	= 3 x 86m EUR		
Annual discounted values	222m EUR ₂₀₂₁	$=\frac{250mEUR_{2024}}{(1+0.04)^{(2024-2021)}}$	77m EUR ₂₀₂₁	$=\frac{86mEUR_{2024}}{(1+0.04)^{(2024-2021)}}$	
Discounted value to EUR ₂₀₂₁ m at a 4% annual discount rate:	214m EUR ₂₀₂₁	$=\frac{250mEUR_{2025}}{(1+0.04)^{(2025-2021)}}$	74m EUR ₂₀₂₁	$=\frac{86mEUR_{2025}}{(1+0.04)^{(2025-2021)}}$	
	205m EUR ₂₀₂₁	$=\frac{250mEUR_{2026}}{(1+0.04)^{(2026-2021)}}$	71m EUR ₂₀₂₁	$=\frac{86mEUR_{2026}}{(1+0.04)^{(2026-2021)}}$	
Fotal discounted value	641m EUR ₂₀₂₁		221m EUR ₂₀₂₁		

Calculation step

[1]

[2] [1]*[2]

Annual OPEX		Unit
computation for	Unitary cost ⁽³⁾	€/MWh
	Withdrawal + Injection volumes	MWh
2027-2050	OPEX in one year	€

Net Present Value =
$$\sum_{t=1}^{2050-2021} \frac{OPEX_t}{(1+0.04)^t}$$
 Total OPEX = 51m EUR₂₀₂₁

2) Source: HRADF study by Frontier Economics (2020) ; updated using the Upstream Capital Costs Index (UCCI) from 2020 to 2021 from IHS.

3) Source: HRADF study by Frontier Economics (2020) ; updated using the Upstream Operating Costs Index (UOCI) from 2020 to 2021 from IHS.

¹⁾ Source: DESFA

5. 422 €m investment scenario results

Normal conditions lead to EUR 446m of benefits, with stress conditions bringing additional value of EUR 274m, above costs at EUR 633m

Section summary

A Normal conditions

Total normal condition = EUR 446 m, out of which:

- Total externalities = EUR 166m
- Margin created from storage = EUR 214m
- Residual value = EUR 66m

B Stress tests

Total stress tests = EUR 274 m, out of which:

- Scenario A. Gas price volatility as in 2021 = EUR 64m
- Scenario B. Pronounced 2-week cold spell = EUR 138m
- Scenario C. Pronounced 2-week cold spell with part power lines outage = EUR 5m
- Scenario D. Pronounced heat wave as in 2021 and part power lines outage = EUR 1m
- Scenario E. Azeri interruption = EUR 7m
- Scenario F. Reduced pipeline supply to Greece & no LNG = EUR 59m

C CAPEX and OPEX

Total CAPEX + OPEX = EUR 632m, out of which:

- CAPEX pipelines = EUR 361m
- CAPEX storage = EUR 221m
- OPEX = EUR 51m

Margin created from storage and externalities in normal conditions bring more than half of the measured benefits

Welfare benefits and costs of the Partial Investment in Greece – Discounted values in million EUR₂₀₂₁

- 1) Stress case benefits are calculated and compared to normal conditions benefits to present here only the additional welfare creation in the stress case.
- 2) We have estimated annual stress case results by assuming that the values computed for 2027 with Plexos would decrease linearly to zero by 2050. 2027 could be expected to be most impactful year due ⁶⁹ to the generally declining role of gas imports over time.
- 3) We assume that the OPEX of DESFA's pipelines pre and post Investment are the same because volumes flown are very similar: only storage OPEX have been included them in this analysis as extra costs.
- 4) The realisation of the Investment could also bring non-monetised benefits as discussed in Section 1 of this deck.

Under normal conditions, total welfare benefit of the Partial Investment is 446m EUR over 2027-2050

Externalities and private benefits in Greece – Partial Investment - 2027 to 2050 – Discounted values in EUR₂₀₂₁

- Values discounted to 2021, using an annual discount rate of 4% (Recommended value of ENTSOG CBA Methodology).
- The benefit in gas and power is calculated as the delta of the wholesale price pre and post investment multiplied by the demand in both segments separately.
- Based on yearly independent modelling runs from 2027 to 2050.

Notes:

Conservatively, the surplus linked to a variation in quantities of **power** is not included here, only surplus linked to a variation in prices is accounted for at this stage, taking into account the minimum demand volume.

E N E R G Y

Following ENTSOG's methodology, the Investment's welfare post 2050 is estimated as the discounted depreciation of the residual value at end-2050

Quantification of externalities post 2050 – Partial Investment

- As we model power and gas markets only until 2050, the end of the ENTSO-E/ENTOS-G TYNDP horizon, assets commissioned in 2027 will not have reached the end of their technical life, but they will provide value to the energy system, at least as options
- ENTSOG CBA guidelines recommend that beyond the simulation period benefits should be assumed equal to the residual accounting value of the Investment.
- We therefore computed the residual values of South Kavala UGS and related network upgrades investments using a linear accounting depreciation over the assets' technical life.
- Annual depreciation post 2050 is discounted back to 2021 using the ENTSOG recommended rate (4%)

Key assumptions we used in calo	Source	
CAPEX for Network upgrade	361m EUR₂₀₂₁ (422m EUR cash out over 2024-2026)	DESFA
CAPEX for Storage creation	221m EUR₂₀₂₁ (258m EUR cash out over 2024-2026)	HRADF study by Frontier Economics (2020) ¹⁾ , adjusted to EUR ₂₀₂₁
Commissioning year	2027	DESFA
Modelled life of the assets	Until 2050	ENTSOG/ENTSOE TYNDP (2020)
Technical life of the assets	40 years (network upgrade) 50 years (storage)	DESFA
Social discount rate	4%	ENTSOG 2 nd CBA Methodology

δ Residual values after 2050

- Network upgrade = 39 EUR₂₀₂₁ m
- Storage creation = 26 EUR₂₀₂₁ m
- Total = 66 EUR₂₀₂₁ m

Externalities and storage margins both contribute to Security of Supply benefits

Summary of stress conditions results – 422 EUR m network upgrade – Additional welfare benefits multiplied by high-level likelihood – EUR₂₀₂₁ m

	α	α	β	γ	
Stress conditions	Gas externalities	Avoided gas shortages	Power externalities	Margin created by storage	Total
A. Gas price volatility as in 2021	6		14	45	64
B. Pronounced pan-European 2- week cold spell	14		22	101	138
C. Pronounced pan-European 2- week cold spell & part power line outage	1		2	2	5
D. Pronounced heat wave as in 2021 & part power lines outage	0		0	0	1
E. Azeri interruption	0		2	4	7
F. Reduced pipeline supply to Greece & no LNG	7	45	6	1	59
	l	γ]	
		∑ = 121		∑ = 153	∑ = 274

Notes on computation:

- 1) Stress case benefits are calculated and compared to normal conditions benefits to present here only the additional welfare creation in the stress case. We assume these additional benefits are realized in the middle of the year.
- 2) We have estimated annual stress case results by assuming that the values computed for 2027 with Plexos would decrease linearly to zero by 2050. 2027 is generally expected to be most impactful year due to the generally declining role of gas imports over time. This estimation may however be conservative in terms of benefits given the expected peak gas consumption in Greece in the early 2030s.
 72
Total CAPEX and OPEX sum EUR 632m

Computation of CAPEX and OPEX for the 422 EUR m network upgrade and Kavala building - EUR₂₀₂₁ m

CAPEX over 2024-2026

	CAPEX N	etwork upgrade	CAPEX Storage building		
Cash out	42	2m EUR ⁽¹⁾	258m EUR ⁽²⁾		
rearly cash out	= 3 x	(141m EUR	= 3 x 86m EUR		
Annual discounted values	125m EUR ₂₀₂₁	$=\frac{141mEUR_{2024}}{(1+0.04)^{(2024-2021)}}$	77m EUR ₂₀₂₁	$=\frac{86mEUR_{2024}}{(1+0.04)^{(2024-2021)}}$	
Discounted value to EUR ₂₀₂₁ m at a 4% annual discount rate:	120m EUR ₂₀₂₁	$=\frac{141mEUR_{2025}}{(1+0.04)^{(2025-2021)}}$	74m EUR ₂₀₂₁	$=\frac{86mEUR_{2025}}{(1+0.04)^{(2025-2021)}}$	
	116m EUR ₂₀₂₁	$=\frac{141mEUR_{2026}}{(1+0.04)^{(2026-2021)}}$	71m EUR ₂₀₂₁	$=\frac{86mEUR_{2026}}{(1+0.04)^{(2026-2021)}}$	
Total discounted value	361m EUR ₂₀₂₁		221m EUR ₂₀₂₁		

Annual OPEX	г
computation for	l
2027-2050	

		Unit	Calculation step	Value
for	Unitary cost ⁽³⁾	€/MWh	[1]	0.276
	Withdrawal + Injection volumes	MWh	[2]	Volume in each year
	OPEX in one year	€	[1]*[2]	0.276*Volume in each year

Net Present Value =
$$\sum_{t=1}^{2050-2021} \frac{OPEX_t}{(1+0.04)^t}$$
 Total OPEX = 51m EUR₂₀₂₁

1) Source: DESFA

2) Source: HRADF study by Frontier Economics (2020) ; updated using the Upstream Capital Costs Index (UCCI) from 2020 to 2021 from IHS.

3) Source: HRADF study by Frontier Economics (2020) ; updated using the Upstream Operating Costs Index (UOCI) from 2020 to 2021 from IHS.

6. Appendix

Gross results for Stress tests in 2027 for Full Investment: undiscounted, no likelihood applied

Summary of stress conditions results – 750 EUR m network upgrade – Additional welfare benefits – EUR₂₀₂₇ m

Stress conditions	Gas externalities	Avoided gas shortages	Power externalities	Margin created by storage	Total
A. Gas price volatility as in 2021	13		30	63	106
B. Pronounced pan-European 2- week cold spell	9		15	61	86
C. Pronounced pan-European 2- week cold spell & part power line outage	21		68	58	146
D. Pronounced heat wave as in 2021 & part power lines outage	1		3	4	8
E. Azeri interruption	1		5	13	19
F. Reduced pipeline supply to Greece & no LNG	46	308	46	8	409
		γ			

∑ = 207

<u>Σ</u> = 774

Gross results for Stress tests in 2027 for Partial Investment: undiscounted, no likelihood applied

Summary of stress conditions results – 422 EUR m network upgrade – Additional welfare benefits – EUR₂₀₂₇ m

Stress conditions	Gas externalities	Avoided gas shortages	Power externalities	Margin created by storage	Total
A. Gas price volatility as in 2021	8		19	62	89
B. Pronounced pan-European 2- week cold spell	9		13	61	83
C. Pronounced pan-European 2- week cold spell & part power line outage	21		67	61	149
D. Pronounced heat wave as in 2021 & part power lines outage	1		3	4	7
E. Azeri interruption	1		5	12	18
F. Reduced pipeline supply to Greece & no LNG	46	308	43	8	405
		Σ = 543		∑ = 208	Σ = 751

<u>Σ</u> = 751

Experts with Impact[™]

Contact

Emmanuel Grand

Senior Managing Director emmanuel.grand@fticonsulting.com | +33 1 40 08 12 43

